LA-UR-99-3509 Approved for public release; distribution is unlimited. | Title: | 242 Pu CRITICAL MASS | |---------------|--| | Author(s): | R. W. Brewer | | Submitted to: | http://lib-www.lanl.gov/la-pubs/00796016.pdf | Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. # ²⁴²Pu CRITICAL MASS R. W. Brewer Los Alamos National Laboratory ESH-6 MS F691 Los Alamos, NM 87545 (505) 667-7252 rbrewer@lanl.gov #### **Abstract** Large amounts of 242 Pu (0.3 to 0.8 mg/g UO₂) are present in spent nuclear reactor fuel with more being produced on a daily basis. For stabilization and reprocessing of spent fuel, criticality safety data are needed to ensure that 242 Pu is handled safely. The calculated bare critical mass of 242 Pu is 85.80 ± 3.46 kg at a density of 19.86 g/cm³. This critical mass was derived based upon calculations of critical experiments that used up to 24 kg 242 Pu. The previous critical mass derivation should be reasonably accurate until such time that integral data can be obtained. #### Introduction In 1979 a set of experiments was performed at Los Alamos Scientific Laboratory using circular plates of plutonium with high ²⁴²Pu content⁽¹⁾. The purpose of these experiments was to verify ²⁴²Pu data by testing the ability to predict criticality for systems composed largely of ²⁴²Pu and to derive the critical mass of ²⁴²Pu. Because large quantities of ²⁴²Pu were not available, the systems were driven to near critical with ²³⁹Pu or highly enriched uranium (HEU). Therefore, the configurations also included plates of HEU or ²³⁹Pu. Some stacks of plates were unreflected. Others were reflected by steel (Fe), beryllium (Be), or depleted uranium (DU). The experiments were slightly subcritical with extrapolations to critical configurations and are described in detail in Reference 1. Calculational results of the different experimental configurations are shown in Table 1. Table 1. Calculational Results of the ²⁴²Pu Critical Experiments | Code (Cross-Section Set) ⇒ | MCNP | MCNP | |--|----------------|----------------| | Experiment ↓ | (CE ENDF/B-V)` | (CE ENDF/B-VI) | | Bare ²³⁹ Pu | 1.0044±0.0015 | 1.0049±0.0015 | | Be Reflected ²³⁹ Pu and ²⁴² Pu | 0.9950±0.0016 | 0.9926±0.0017 | | DU Reflected ²³⁹ Pu and ²⁴² Pu | 1.0103±0.0016 | 1.0069±0.0019 | | Fe Reflected ²³⁹ Pu and ²⁴² Pu | 0.9943±0.0016 | 0.9931±0.0016 | | End-Driven Bare ²³⁹ Pu and ²⁴² Pu | 1.0008±0.0017 | 0.9990±0.0015 | | Center-Driven Bare ²³⁹ Pu and ²⁴² Pu | 1.0080±0.0017 | 1.0085±0.0017 | | Fe/DU Reflected HEU and ²⁴² Pu | 1.0004±0.0016 | 0.9941±0.0014 | | Code (Cross-Section Set) ⇒ | TWODANT | TWODANT | | |--|---------------------|----------------------|--| | Experiment ↓ | (30 group ENDF/B-V) | (30 group ENDF/B-VI) | | | Bare ²³⁹ Pu | 1.0029 | 1.0037 | | | Be Reflected ²³⁹ Pu and ²⁴² Pu | 0.9925 | 0.9906 | | | DU Reflected ²³⁹ Pu and ²⁴² Pu | 1.0060 | 1.0039 | | | Fe Reflected ²³⁹ Pu and ²⁴² Pu | 1.0021 | 0.9993 | | | End-Driven Bare ²³⁹ Pu and ²⁴² Pu | 0.9979 | 0.9971 | | | Center-Driven Bare ²³⁹ Pu and ²⁴² Pu | 1.0027 | 1.0027 | | | Fe/DU Reflected HEU and ²⁴² Pu | 1.0116 | 1.0014 | | | Code (Cross-Section Set) ⇒ | TWODANT | TWODANT | |--|---------------------|--------------------| | Experiment \downarrow | (44 group ENDF/B-V) | (28 group ABBN-93) | | Bare ²³⁹ Pu | 1.0050 | 1.0038 | | Be Reflected ²³⁹ Pu and ²⁴² Pu | 0.9993 | 0.9929 | | DU Reflected ²³⁹ Pu and ²⁴² Pu | 1.0015 | 1.0030 | | Fe Reflected ²³⁹ Pu and ²⁴² Pu | 0.9900 | 0.9791 | | End-Driven Bare ²³⁹ Pu and ²⁴² Pu | 1.0025 | 0.9971 | | Center-Driven Bare ²³⁹ Pu and ²⁴² Pu | 1.0064 | 1.0082 | | Fe/DU Reflected HEU and ²⁴² Pu | 1.0041 | 0.9915 | It was estimated in 1979 that a bare sphere of pure ²⁴²Pu has a critical mass of about 80-kg at a density of 19.86 g/cm³. It was also estimated that a bare square cylinder (height = diameter) of pure ²⁴²Pu has a critical mass of about 90 kg at a density of 19.86 g/cm³. The two pure ²⁴²Pu models were found using calculational methods (KENO and ANISN with 16 group cross sections) which were biased using calculations of the experimental configurations. #### **Calculations** Based on the calculational results for the seven experimental configurations, four cross section libraries consistently yielded calculational results within the experimental uncertainties, Mendf5, Mendf6, ABBN-93 and 44-group ENDF/B-V. These four libraries were used to determine the bare spherical critical mass of a ²⁴²Pu metal system at a density of 19.86 g/cm³, bare, reflected by iron (7.87 g/cm³ and 100 wt% Fe), and reflected by water. The results are shown in Table 2. Table 2. Critical Mass Values of ²⁴²Pu | Code | ONEDANT | ONEDANT | ONEDANT | ONEDANT | |-------------------------|---|---------------------|----------|----------| | (Cross Section Library) | (ABBN-93) | (44-Group ENDF/B-V) | (Mendf5) | (Mendf6) | | Reflector | Calculated Critical Mass ²⁴² Pu Metal (kg ²⁴² Pu) | | | | | Bare | 88.83 | 80.00 | 86.40 | 87.97 | | Iron | 55.41 | 45.36 | 48.10 | 48.80 | | Water | 82.34 | 82.48 | 78.30 | 79.24 | | | Calculated Critical Mass ²⁴² PuO ₂ (kg ²⁴² Pu) | | | | | Bare | 418.44 | 384.76 | 363.44 | 366.66 | | Iron | 286.82 | 244.67 | 224.94 | 225.60 | | Water | 395.88 | 359.28 | 342.15 | 366.94 | The critical masses were calculated based on a simple average of the calculations shown in Table 2. The calculated bare metallic critical mass is 85.80 kg 242 Pu. The calculated iron reflected metallic critical mass is 49.42 kg 242 Pu. The calculated water reflected metallic critical mass is 80.59 kg 242 Pu. The calculated bare oxide critical mass is 383.32 kg 242 Pu. The calculated iron reflected metallic critical mass is 245.51 kg 242 Pu. The calculated water reflected metallic critical mass is 366.06 kg 242 Pu. The different experimental assemblies had uncertainties ranging from ± 0.0054 to ± 0.0121 in the values of the calculated k_{eff} . Calculation of the experimental assemblies ranged from 0.9791 to 1.0116. The uncertainty in mass, based upon calculation of each experimental configuration for the four cross section libraries, is ± 3.94 kg ²⁴²Pu. This analysis assumes that the uncertainty is due entirely to the ²⁴²Pu cross section data. This is obviously a false assumption, but it does increase the ²⁴²Pu critical mass uncertainty. The uncertainty of the calculated critical masses was derived using standard deviation methodology. The uncertainty in the bare metallic critical mass is ± 3.46 kg 242 Pu. The uncertainty in the iron reflected metallic critical mass is ± 3.69 kg 242 Pu. The uncertainty in the water reflected metallic critical mass is ± 1.85 kg 242 Pu. The uncertainty in the bare oxide critical mass is ± 21.84 kg 242 Pu. The uncertainty in the iron reflected oxide critical mass is ± 25.13 kg 242 Pu. The uncertainty in the water reflected oxide critical mass is ± 19.41 kg 242 Pu. ### **Conclusion** The previous uncertainties were combined to yield the total uncertainty in the various 242 Pu calculated critical masses. The calculated critical masses with the associated uncertainties are shown in Table 4. The uncertainty associated with calculation of the experimental configurations was not applied to the 242 PuO₂ calculated critical masses. These critical mass derivations should be reasonably accurate until such time that integral data can be obtained. Table 4. Final Critical Mass Values and Their Uncertainties | Reflector | Critical Mass ²⁴² Pu Metal
(kg ²⁴² Pu) | Δk_{eff} associated with mass uncertainty | | | |----------------------------|---|---|--|--| | | ²⁴² Pu Metal | | | | | Bare | 85.80±3.46 | ±0.0089 | | | | Iron | 49.42±3.69 | ±0.0165 | | | | Water | 80.59±1.85 | ±0.0050 | | | | 242 Pu O_2 | | | | | | Bare | 383.32±21.84 | ±0.0091 | | | | Iron | 245.51±25.13 | ±0.0031 | | | | Water | 366.06±19.41 | ±0.0084 | | | Calculational results of the critical mass values given in Table 4 using MCNP and ONEDANT with various cross section sets are shown in Table 5. Many of the calculational results fall outside the derived uncertainty. Table 5. Calculational Results of the Estimated ²⁴²Pu Critical Mass | ²⁴² Pu Metal | | | | | |------------------------------------|---------------|---------------|---------------------|--| | Code (Cross-Section Set) | Bare | Iron | Water | | | MCNP (Continuous-energy ENDF/B-V) | 0.9970±0.0018 | 0.9851±0.0018 | 1.0046 ± 0.0017 | | | MCNP (Continuous-energy ENDF/B-VI) | 0.9966±0.0020 | 0.9769±0.0019 | 0.9998 ± 0.0017 | | | MCNP (Continuous-energy JENDL 3.2) | 1.0532±0.0022 | 1.0291±0.0020 | 1.0605 ± 0.0019 | | | TWODANT (44-group ENDF/B-V) | 1.0160 | 1.0196 | 1.0225 | | | TWODANT (Mendf5) | 0.9985 | 1.0060 | 1.0063 | | | TWODANT (Mendf6) | 0.9972 | 1.0028 | 1.0038 | | | TWODANT (ABBN-93) | 0.9927 | 0.9761 | 0.9955 | | | 242 Pu O_2 | | | | | | MCNP (Continuous-energy ENDF/B-V) | 0.9816±0.0020 | 0.9741±0.0021 | 0.9883±0.0019 | | | MCNP (Continuous-energy ENDF/B-VI) | 0.9884±0.0019 | 0.9771±0.0018 | 0.9895±0.0017 | | | MCNP (Continuous-energy JENDL 3.2) | 1.0398±0.0020 | 1.0273±0.0019 | 1.0407±0.0020 | | | TWODANT (44-group ENDF/B-V) | 0.9983 | 0.9923 | 1.0008 | | | TWODANT (Mendf5) | 1.0076 | 1.0055 | 1.0102 | | | TWODANT (Mendf6) | 1.0066 | 1.0053 | 1.0089 | | | TWODANT (ABBN-93) | 0.9842 | 0.9733 | 0.9856 | | ## References 1. R. W. Brewer, "Critical Experiments Performed Using Plates of Plutonium-242, HEU and Plutonium-239," International Handbook of Evaluated Criticality Safety Experiments, SPEC-MET-FAST-004, Nuclear Energy Agency, Organization for Economic Co-Operation and Development.